—— = = i
—— | -

= . —— — i —— —

S===S = = FRIEDRICH-ALEXANDER » Los Alamos E=== S5== = INSTITUTE|

= e wm = UNIVERSITAT NATIONAL LABORATORY — mm === == MATERIALS SCIENCE
= & '="=—=" ERLANGEN-NURNBERG Est.9a3 - e e &= ANDENGINEERING

A Multiscale Simulation Framework of the Accumulative Roll
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Accumulative Roll Bonding (ARB) is a promising severe plastic deformation process for « Conventional rolling simulations are insufficient - anisotropy in yield surface depends
achieving materials with enhanced properties. Due to repeated stacking and roll bonding, a on the number of ARB passes LS

large amount of plastic deformation is accumulated, resulting in an ultra-fine-grained
(UFG) microstructure, and consequently, high strength.
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* Currently, no comprehensive simulation framework available for ARB the carry-over of material state from one pass to another 1 /
« Adoption of new materials, however, hinges on the possibility to reliably model the * Computationally intensive - development and implementation of efficient numerical
deformation behavior and failure of the material during processing and in-use conditions algorithms required for simulations in realistic time frames
Elements of the multiscale framework: Schematic of the multiscale framework Simulation details:
* Structural response — explicit FEM with multi-level parallelization * Plane strain rolling, roller ¢ =32 mm

* Feedstock —two AA5754 Al alloy sheets

* Mesh — 500 brick elements (C3D8R)

* Random texture with 250 grains per
integration point

* Material response — visco-plastic selfconsistent (VPSC) model

» Multi-level parallelization: MPI based domain decomposition of the structural
response + openMP based thread parallelization of the material response

» Selective probing: linear stress update performed when VPSC is not called

Novel solution mapping scheme
* Transfers complete material state from one pass to another
* Material state mapped onto a completely new mesh = No mesh distortion problems

* Only microscopic variables used for mapping = CRSS g<“), cumulative shear I,
grain shape F°, grain orientation g°

Material response - VPSC model

Deformed configuration Stack of Interpolate  Mirrored Mapping interpolated
after ARB pass 1 elements material stacking of material state to an
after pass 1 states interpoiated undistorted mesh
elements for pass 2
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Stress state after ARB pass 1 s Lt Stress state after ARB pass 2 Through-thickness-gradient of texture
(All texture dependent properties are critically
influenced by this gradient )
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Textures after ARB pass 1 Interpolated textures and Textures after ARB pass 2 _&_
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* Proposed multiscale framework able to capture evolution of texture and resulting anisotropy during ARB F \
* Novel solution mapping scheme enables simulation of multiple ARB passes and facilitates usage of " .
%) constant number of elements in each pass
S * Material state mapped onto a completely new mesh = mesh distortion problems circumvented 1
= -
(g * Multilevel parallelization (MPI+openMP) helps reduce simulation times by up to 70% o
gzfl ° Through-thickness-gradient of material properties - yield behavior of surface elements differs from those
g in the center = must be accounted for in subsequent simulations like e.g. deep drawing
[@f ° Effect of stacking of sheets - gradient of texture depends on number of ARB passes

- shear experienced by elements in lower surface is reduced in subsequent pass
-> yield behavior significantly different when compared to conventional rolling

* Proposed framework not restricted to ARB alone; can be used for other forming processes like conventional rolling, deep drawling etc.






